
 IRONSOFTWARE
	PRODUCTS
	OPEN SOURCE
	ABOUT US
	CONTACT US

205 N. Michigan Ave. Chicago, IL 60611, USA
+1 (312) 500-3060
Join Iron Slack

Our Company
	About Us
	Company News
	Customers
	Environmental Commitments
	Beta Program
	Year in Review: 2022

Sales Partners
	Global Resellers
	Merchant of Record

Contact Us
	Live Chat

	Send an Email

+1 (312) 500-3060
205 N. Michigan Ave.
Chicago, IL 60611, USA

Careers at Iron
Join our teamWe're hiring

for .NET

JavaPythonNode.js

Create, read, and edit PDFs

for .NET

Edit DOCX Word Files
No Office Interop required

for .NET

Edit Excel & CSV Files.
No Office Interop required

for .NET

Image to text in 127 languages

for .NET

Read and write Barcodes

for .NET

Read & write QR codes with ML detection

for .NET

Zip and unzip archives

for .NET

Customized Printing of Files

for .NET

Extract structured data from websites

 All 9 for
the Price of 2 Save 77% with Iron Suite

for .NET

System.Drawing.Common Replacement

Free Software Development Tools

for
.NET
	.NET
	Java via gRPC
	Python via .NET
	Node.js via gRPC

	Home
	Licensing	Licensing
	EULA
	Support & Update Extensions
	License Upgrades
	Start Free Trial

	Features
	Docs	Get Started
	Demos
	Code Examples
	Tutorials
	How-Tos
	Troubleshooting
	Product Updates
	API Reference

Search
Ctrl
K

 Free NuGet DownloadTotal downloads: 8,434,114

for

.NET	.NET
	Java
	Python
	Node.js

	IRONSOFTWARE HOME
	PRODUCTS
	IRONSUITE

	

	IRONPDF
UPDATED

	IRONWORD

	IRONXL

	IRONOCR

	IRONBARCODE

	IRONQR

	IRONZIP

	IRONPRINT

	IRONWEBSCRAPER

	OPEN SOURCE
	IRONDRAWING

	IRONFREETOOLS

	ABOUT US
	About US

	Company News

	Environmental Commitments

	Beta Program

	Year in Review: 2022

	Live Chat

	Global Resellers

	Join our team

	CONTACT US

	HOME
	LICENSING
	Licensing
	EULA
	Support & Update Extensions
	License Upgrades
	

	Start Free Trial

	FEATURES
	DOCS
	Get Started
	Demos
	Code Examples
	Tutorials
	How-Tos
	Troubleshooting
	Product Updates
	

	API Reference

The C# PDF Library
	Convert HTML to PDF in .NET 8, 7, 6, Core, & Framework
	Generate PDFs in C# using HTML, MVC, ASPX, & Images
	Sign, Edit, and Read PDFs with 50+ Features
	Install & Deploy in minutes with NuGet

Explore IronPDF Free NuGet Download

Examples

	HTML to PDF
	HTML File to PDF
	URL to PDF
	ASPX to PDF
	ASPX To PDF (Advanced Settings)
	Images To PDF
	Headers & Footers
	PDF Forms
	Responsive HTML to PDF

 HTML to PDF Run
using IronPdf;

// Disable local disk access or cross-origin requests
Installation.EnableWebSecurity = true;

// Instantiate Renderer
var renderer = new ChromePdfRenderer();

// Create a PDF from a HTML string using C#
var pdf = renderer.RenderHtmlAsPdf("<h1>Hello World</h1>");

// Export to a file or Stream
pdf.SaveAs("output.pdf");

// Advanced Example with HTML Assets
// Load external html assets: Images, CSS and JavaScript.
// An optional BasePath 'C:\site\assets\' is set as the file location to load assets from
var myAdvancedPdf = renderer.RenderHtmlAsPdf("", @"C:\site\assets\");
myAdvancedPdf.SaveAs("html-with-assets.pdf");

 HTML File to PDF Run
using IronPdf;

// Instantiate Renderer
var renderer = new ChromePdfRenderer();

// Create a PDF from an existing HTML file using C#
var pdf = renderer.RenderHtmlFileAsPdf("example.html");

// Export to a file or Stream
pdf.SaveAs("output.pdf");

 URL to PDF Run
using IronPdf;

// Instantiate Renderer
var renderer = new ChromePdfRenderer();

// Create a PDF from a URL or local file path
var pdf = renderer.RenderUrlAsPdf("https://ironpdf.com/");

// Export to a file or Stream
pdf.SaveAs("url.pdf");

 ASPX to PDF
using IronPdf;

private void Form1_Load(object sender, EventArgs e)
{
 //Changes the ASPX output into a pdf instead of HTML
 IronPdf.AspxToPdf.RenderThisPageAsPdf();
}

 ASPX To PDF (Advanced Settings)
using IronPdf;

var PdfOptions = new IronPdf.ChromePdfRenderOptions()
{
 CreatePdfFormsFromHtml = true,
 EnableJavaScript = false,
 Title = "My ASPX Page Rendered as a PDF"
 //.. many more options available
};

AspxToPdf.RenderThisPageAsPdf(AspxToPdf.FileBehavior.Attachment, "MyPdfFile.pdf", PdfOptions);

 Images To PDF
using IronPdf;
using System.IO;
using System.Linq;

// One or more images as IEnumerable. This example selects all JPEG images in a specific 'assets' folder.
var imageFiles = Directory.EnumerateFiles("assets").Where(f => f.EndsWith(".jpg") || f.EndsWith(".jpeg"));

// Converts the images to a PDF and save it.
ImageToPdfConverter.ImageToPdf(imageFiles).SaveAs("composite.pdf");

// Also see PdfDocument.RasterizeToImageFiles() method to flatten a PDF to images or thumbnails

 Headers & Footers
using IronPdf;

// Initiate PDF Renderer
var renderer = new ChromePdfRenderer();

// Add a header to every page easily
renderer.RenderingOptions.FirstPageNumber = 1; // use 2 if a cover page will be appended
renderer.RenderingOptions.TextHeader.DrawDividerLine = true;
renderer.RenderingOptions.TextHeader.CenterText = "{url}";
renderer.RenderingOptions.TextHeader.Font = IronSoftware.Drawing.FontTypes.Helvetica;
renderer.RenderingOptions.TextHeader.FontSize = 12;
renderer.RenderingOptions.MarginTop = 25; //create 25mm space for header

// Add a footer too
renderer.RenderingOptions.TextFooter.DrawDividerLine = true;
renderer.RenderingOptions.TextFooter.Font = IronSoftware.Drawing.FontTypes.Arial;
renderer.RenderingOptions.TextFooter.FontSize = 10;
renderer.RenderingOptions.TextFooter.LeftText = "{date} {time}";
renderer.RenderingOptions.TextFooter.RightText = "{page} of {total-pages}";
renderer.RenderingOptions.MarginTop = 25; //create 25mm space for footer

// Mergeable fields are:
// {page} {total-pages} {url} {date} {time} {html-title} & {pdf-title}

 PDF Forms
using IronPdf;
using System;

// Step 1. Creating a PDF with editable forms from HTML using form and input tags
// Radio Button and Checkbox can also be implemented with input type 'radio' and 'checkbox'
const string formHtml = @"
 <html>
 <body>
 <h2>Editable PDF Form</h2>
 <form>
 First name:
 <input type='text' name='firstname' value=''>

 Last name:
 <input type='text' name='lastname' value=''>

 <p>Please specify your gender:</p>
 <input type='radio' id='female' name='gender' value= 'Female'>
 <label for='female'>Female</label>

 <input type='radio' id='male' name='gender' value='Male'>
 <label for='male'>Male</label>

 <input type='radio' id='non-binary/other' name='gender' value='Non-Binary / Other'>
 <label for='non-binary/other'>Non-Binary / Other</label>

 <p>Please select all medical conditions that apply:</p>
 <input type='checkbox' id='condition1' name='Hypertension' value='Hypertension'>
 <label for='condition1'> Hypertension</label>

 <input type='checkbox' id='condition2' name='Heart Disease' value='Heart Disease'>
 <label for='condition2'> Heart Disease</label>

 <input type='checkbox' id='condition3' name='Stoke' value='Stoke'>
 <label for='condition3'> Stoke</label>

 <input type='checkbox' id='condition4' name='Diabetes' value='Diabetes'>
 <label for='condition4'> Diabetes</label>

 <input type='checkbox' id='condition5' name='Kidney Disease' value='Kidney Disease'>
 <label for='condition5'> Kidney Disease</label>

 </form>
 </body>
 </html>";

// Instantiate Renderer
var renderer = new ChromePdfRenderer();
renderer.RenderingOptions.CreatePdfFormsFromHtml = true;
renderer.RenderHtmlAsPdf(formHtml).SaveAs("BasicForm.pdf");

// Step 2. Reading and Writing PDF form values.
var FormDocument = PdfDocument.FromFile("BasicForm.pdf");

// Set and Read the value of the "firstname" field
var FirstNameField = FormDocument.Form.FindFormField("firstname");
FirstNameField.Value = "Minnie";
Console.WriteLine("FirstNameField value: {0}", FirstNameField.Value);

// Set and Read the value of the "lastname" field
var LastNameField = FormDocument.Form.FindFormField("lastname");
LastNameField.Value = "Mouse";
Console.WriteLine("LastNameField value: {0}", LastNameField.Value);

FormDocument.SaveAs("FilledForm.pdf");

 Responsive HTML to PDF
using IronPdf;
using IronPdf.Engines.Chrome;

// Instantiate Renderer
var renderer = new ChromePdfRenderer();

// Set the width of the Responsive Viewport in pixels
int pixelWidth = 1280;
renderer.RenderingOptions.PaperFit.UseResponsiveCssRendering(pixelWidth);

// Set paper mode to automatic fit to physical paper
renderer.RenderingOptions.FitToPaperMode = FitToPaperModes.AutomaticFit;

// Render an HTML file
var pdf = renderer.RenderHtmlFileAsPdf("Assets/Responsive.html");

	IronPDF
	IronPDF Blog
	Product Comparisons
	Compare to iTextSharp for HTML to PDF

Published November 9, 2021
iTextSharp C# HTML to PDF Alternative for .NET Core
IronPDF and iText 7 (formerly known as iTextSharp) both provide the ability generate, manipulate, and print PDFs in .NET and .NET Core.
Which C# PDF library is best suited for your .NET project? The goal of this article is to help readers make a proper and informed decision.

How to Use iTextSharp in C#
	Download and install the iTextSharp C# library DLL from GitHub
	Include the pdfHTML add-on for enhanced HTML to PDF file conversion
	Call the HtmlConverter.ConvertToPDF method to convert an HTML file into a PDF file
	Use iTextSharp's programmatic API to draw text, pictures, charts and tables into PDF documents
	Compare the PDF output with the original HTML page

Overview
C# Library Comparison
IronPDF is:
	.NET First
	Openly commercial with published pricing
	Focuses on rendering PDF's from HTML so that developers do not need to learn how PDF's work
	A great choice for pragmatic coders trying to get a job done.

iText (iTextSharp) is:
	Java First
	Very much Open Source. We may call them, for a quote for use other than in strict open source AGLP projects.
	Focuses on rendering PDF's using a programmatic API based around how PDFs work internally
	A great choice for free and academic projects

iText 7 vs. IronPDF .NET Library
iTextSharp has been around for at least 6 years, based on an open source Java codebase called iText, and still has somewhat of a Java flavor. Developers who first learned Java may find this library familiar.
IronPDF is a .NET-first library with an API designed around ease of use in Visual Studio. .NET has been in existence for almost 20 years, continually growing and expanding, and opening up many possibilities, which IronPDF is designed to leverage. It allows us to create and manipulate PDF documents in .NET framework projects. You can download IronPDF as an iTextSharp Alternative.
The rendering API of iText and IronPDF are quite different. Let's compare each code segment to add headers and footers to a PDF document.
Add Headers and Footers to PDFs in C# with IronPDF
Renderer.RenderingOptions.TextHeader = new TextHeaderFooter()
{
 CenterText = "{pdf-title}",
 DrawDividerLine = true,
 FontSize = 16
};
Renderer.RenderingOptions.TextHeader = new TextHeaderFooter()
{
 LeftText = "{date} {time}",
 RightText = "Page {page} of {total-pages}",
 DrawDividerLine = true,
 FontSize = 14
};

Renderer.RenderingOptions.TextHeader = new TextHeaderFooter()
{
 CenterText = "{pdf-title}",
 DrawDividerLine = true,
 FontSize = 16
};
Renderer.RenderingOptions.TextHeader = new TextHeaderFooter()
{
 LeftText = "{date} {time}",
 RightText = "Page {page} of {total-pages}",
 DrawDividerLine = true,
 FontSize = 14
};
Renderer.RenderingOptions.TextHeader = New TextHeaderFooter() With {
	.CenterText = "{pdf-title}",
	.DrawDividerLine = True,
	.FontSize = 16
}
Renderer.RenderingOptions.TextHeader = New TextHeaderFooter() With {
	.LeftText = "{date} {time}",
	.RightText = "Page {page} of {total-pages}",
	.DrawDividerLine = True,
	.FontSize = 14
}

VB C#

iTextSharp Add PDF Headers & Footers
Paragraph header = new Paragraph("HEADER")
 .SetTextAlignment(TextAlignment.CENTER)
 .SetFontSize(16);
document.Add(header);

for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
{
 Rectangle pageSize = pdf.GetPage(i).GetPageSize();
 float x = pageSize.GetWidth() / 2;
 float y = pageSize.GetTop() - 20;
 document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
}

document.SetTopMargin(50);
document.SetBottomMargin(50);

Paragraph header = new Paragraph("HEADER")
 .SetTextAlignment(TextAlignment.CENTER)
 .SetFontSize(16);
document.Add(header);

for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
{
 Rectangle pageSize = pdf.GetPage(i).GetPageSize();
 float x = pageSize.GetWidth() / 2;
 float y = pageSize.GetTop() - 20;
 document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
}

document.SetTopMargin(50);
document.SetBottomMargin(50);
Dim header As Paragraph = (New Paragraph("HEADER")).SetTextAlignment(TextAlignment.CENTER).SetFontSize(16)
document.Add(header)

Dim i As Integer = 1
Do While i <= pdf.GetNumberOfPages()
	Dim pageSize As Rectangle = pdf.GetPage(i).GetPageSize()
'INSTANT VB WARNING: Instant VB cannot determine whether both operands of this division are integer types - if they are then you should use the VB integer division operator:
	Dim x As Single = pageSize.GetWidth() / 2
	Dim y As Single = pageSize.GetTop() - 20
	document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0)
	i += 1
Loop

document.SetTopMargin(50)
document.SetBottomMargin(50)

VB C#

By quickly glancing at the code, you can see that IronPDF is pragmatic, based on common end user requirements.
iText is a lower level library which focuses on a drawing API where we add objects, shapes, and text to pages.
iTextSharp.dll uses a primarily programmatic model to render PDFs. When using the iTextSharp PDF library, each piece of PDF text, graphic, table or line is “plotted” or drawn onto a PDF. The API appears low level and is focused on the PDF document standard. This model allows precision, but may require developers to learn a little about how PDFs work. Closely matching an existing design styles or web assets may take some of iteration and reading the iTextSharp documentation. In keeping with its heritage, the methodology and programmatic interface has a distinct Java flavor.
In contrast, IronPDF uses a full embedded web browser renderer to convert HTML to PDF. Following short (1- and 2-line) C# code examples, developers can generate PDFs from existing or new HTML, images and CSS. This allows developers to work closely with existing web assets and also work in parallel with designers during a project. iText does include HTML to PDF functionality for C# .NET, though it is not, apparently, the library's dominant feature.
Read on for more comparative details on the different ways that IronPDF and iTextSharp can help developers achieve the following goals:
	Create a PDF from an Existing URL
	Create a PDF Document from an HTML input string
	Convert ASPX Pages to PDF
	Convert XML to PDF
	Live Data (chart)

1. Licensing
Licensing options are also an important factor to developer projects. iTextSharp is Open Source under the AGPL license agreement. When licensed under AGLP, anyone who uses any part of an application which contains iTextSharp (even across a company network or the internet) may be entitled to a full copy of the app's full source code. This is excellent for academic work. If we wish to use iTextSharp in commercial applications it is best practice to contact iText and ask them for a quote on the pricing for iText commercial usage.
IronPDF is free for development, and can then be licensed for commercial deployment at publicly published, reasonable prices starting at $749.
IronPDF and iTextSharp
This is how the 2 libraries stack up:
		
	Convert HTML to PDF via a full built-in web browser	Basic HTML to PDF via a pdfHTML add-on
	Rendering focus: Embedded web browser	Rendering focus: Programmatic drawing model
	IronPDF has explicit licenses with published prices	AGPL! Commercial use pricing not published.
	 Easy to Code with .NET First Design	Based on a Java API
	 Not suited to academic assignments and coursework	 Excellent for academic assignments and research

Key Differences
Generate PDF from HTML using IronPDF
IronPDF enables .NET and .NET Core developers to generate, merge, split, edit, and extract PDF content easily in C#, F#, and VB.NET for .NET Core and .NET Framework, as well as create PDFs from HTML, ASPX, CSS, JS, and image files.
It makes use of a fully embedded web browser to convert HTML to PDF. This allows developers to generate PDFs from HTML, images, and CSS, and to work closely with existing web assets and also work in parallel with designers during a project.
2. IronPDF Features
IronPDF really focuses on developer productivity. The library simplifies many common complex PDF code tasks into convenient C# methods to extract text and images, sign PDFS, edit PDFS with new HTML and more, without the developer needing to study the PDF document standard to understand how to achieve their best result.
	Generating PDF documents from HTML, images and ASPX files
	Reading PDF text
	Extracting data and images from PDFs
	Merging PDF documents
	Splitting PDFs
	Manipulating PDFs

2. iTextSharp Documentation Features
The iTextSharp.dll uses a primarily programmatic model to render PDFs, and it has advanced PDF manipulation APIs that are powerful and follow the PDF standard closely.
	AGLP strict open source licensing
	Programmatic drawing model
	Edit and Read PDFs
	Solid functionality for PDF manipulation
	Based on a Java library

Let's compare by creating an example project utilizing both libraries:

Example Project
Create an ASP.NET Project
Make use of the following steps to create an ASP.NET website:
	Open Visual Studio
	Click File > New Project
	Select Web under Visual C# in the Project type listbox
	Select ASP.NET Web Application

Figure 1 – New Project

	Click OK

	On the next screen, select Web Forms as shown in Figure 2 underneath

Figure 2 – Web Forms

	Click OK

Now we have something to work with. Let’s Install IronPDF.

Get Started
3. IronPDF Library Installation
In order to make use of IronPDF, you first need to install it (free). There are two options:
	NuGet
	Download the library

Let’s have a closer look.

Install with NuGet

Install-Package IronPdf

nuget.org/packages/IronPdf/

or

Download DLL

 Download DLLManually install into your project

3.1. Install using NuGet
There are three ways to install the IronPDF NuGet package:
	Visual Studio
	Developer Command Prompt
	Download the NuGet Package directly

Let’s do them one-by-one.
3.2. Visual Studio
Visual Studio provides the NuGet Package Manager for you to install NuGet packages in your projects. You can access it via the Project Menu, or by right clicking your project in the Solution Explorer. Both these options are shown below in Figures 3 and 4
Figure 3 – Project menu

Figure 4 – Right click Solution Explorer

After you have clicked Manage NuGet Packages from either option, Browse for the IronPDF package and install it as shown in Figure 5.
Figure 5 – Install IronPDF NuGet Package

3.3. Developer Command Prompt
The following steps opens the Developer Command Prompt and installs the IronPDF NuGet package
	Search for your Developer Command Prompt – it is usually under your Visual Studio folder
	Type in the following command: PM > Install-Package IronPdf
	Press Enter
	The package will be installed
	Reload your Visual Studio project

3.4. Download the NuGet Package directly
In order to download the NuGet package:
	Navigate to https://www.nuget.org/packages/IronPdf/
	Click on Download Package
	After the package has downloaded, double click it
	Reload your Visual Studio project

3.5. Download the .DLL Library
The second way to install IronPDF is by direct download.
Figure 6 – Download IronPDF library

Reference the Library in your project by using the next steps:
	Right-click the Solution in the Solution Explorer
	Select References
	Browse for the IronPDF.dll library
	Click OK

Now that you’re set up, we can start playing with the awesome features in the IronPDF library after the setup for iTextSharp.
Install iTextSharp by using NuGet
There are three ways to install the iTextSharp NuGet package, they are:
	Visual Studio
	Developer Command Prompt
	Download the NuGet Package directly

Let’s do them one-by-one.
For Visual Studio, search for iText and install the relevant packages, as shown next.
Figure 7 – iText

Or, in the Developer Command Prompt (as shown previously, enter the following command)
	PM > Install-Package itext7

Or, download iText 7 directly from their website.
Now that you have created the necessary projects, let’s compare these two libraries in code.

Compare the Code
4. Create a PDF from an Existing URL
The following code downloads a webpage and converts it to a PDF document.
4.1. IronPDF Website to PDF
The following code is using IronPDF to create a PDF document directly from a website address. Custom Headers and Footers are also included.
/**
IronPDF URL to PDF
anchor-ironpdf-website-to-pdf
**/
private void ExistingWebURL()
{
 // Create a PDF from any existing web page
 var Renderer = new IronPdf.ChromePdfRenderer();

 // Create a PDF from an existing HTML
 Renderer.RenderingOptions.MarginTop = 50; //millimetres
 Renderer.RenderingOptions.MarginBottom = 50;
 Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print;
 Renderer.RenderingOptions.TextHeader = new TextHeaderFooter()
 {
 CenterText = "{pdf-title}",
 DrawDividerLine = true,
 FontSize = 16
 };
 Renderer.RenderingOptions.TextFooter = new TextHeaderFooter()
 {
 LeftText = "{date} {time}",
 RightText = "Page {page} of {total-pages}",
 DrawDividerLine = true,
 FontSize = 14
 };

 Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print;

 Renderer.RenderingOptions.EnableJavaScript = true;
 Renderer.RenderingOptions.RenderDelay = 500; //milliseconds

 using var PDF = Renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/Portable_Document_Format");

 PDF.SaveAs("wikipedia.pdf");
}

/**
IronPDF URL to PDF
anchor-ironpdf-website-to-pdf
**/
private void ExistingWebURL()
{
 // Create a PDF from any existing web page
 var Renderer = new IronPdf.ChromePdfRenderer();

 // Create a PDF from an existing HTML
 Renderer.RenderingOptions.MarginTop = 50; //millimetres
 Renderer.RenderingOptions.MarginBottom = 50;
 Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print;
 Renderer.RenderingOptions.TextHeader = new TextHeaderFooter()
 {
 CenterText = "{pdf-title}",
 DrawDividerLine = true,
 FontSize = 16
 };
 Renderer.RenderingOptions.TextFooter = new TextHeaderFooter()
 {
 LeftText = "{date} {time}",
 RightText = "Page {page} of {total-pages}",
 DrawDividerLine = true,
 FontSize = 14
 };

 Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print;

 Renderer.RenderingOptions.EnableJavaScript = true;
 Renderer.RenderingOptions.RenderDelay = 500; //milliseconds

 using var PDF = Renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/Portable_Document_Format");

 PDF.SaveAs("wikipedia.pdf");
}
'''
'''IronPDF URL to PDF
'''anchor-ironpdf-website-to-pdf
'''*
Private Sub ExistingWebURL()
	' Create a PDF from any existing web page
	Dim Renderer = New IronPdf.ChromePdfRenderer()

	' Create a PDF from an existing HTML
	Renderer.RenderingOptions.MarginTop = 50 'millimetres
	Renderer.RenderingOptions.MarginBottom = 50
	Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print
	Renderer.RenderingOptions.TextHeader = New TextHeaderFooter() With {
		.CenterText = "{pdf-title}",
		.DrawDividerLine = True,
		.FontSize = 16
	}
	Renderer.RenderingOptions.TextFooter = New TextHeaderFooter() With {
		.LeftText = "{date} {time}",
		.RightText = "Page {page} of {total-pages}",
		.DrawDividerLine = True,
		.FontSize = 14
	}

	Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print

	Renderer.RenderingOptions.EnableJavaScript = True
	Renderer.RenderingOptions.RenderDelay = 500 'milliseconds

	Dim PDF = Renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/Portable_Document_Format")

	PDF.SaveAs("wikipedia.pdf")
End Sub

VB C#

4.2. iText7 URL to PDF
The following code uses iText7 to create a PDF document directly from a website address and add headers and footers.
/**
iText URL to PDF
anchor-itext-url-to-pdf
**/
private void ExistingWebURL()
{
 //Initialize PDF writer
 PdfWriter writer = new PdfWriter("wikipedia.pdf");
 //Initialize PDF document
 using PdfDocument pdf = new PdfDocument(writer);

 ConverterProperties properties = new ConverterProperties();
 properties.SetBaseUri("https://en.wikipedia.org/wiki/Portable_Document_Format");

 Document document = HtmlConverter.ConvertToDocument(new FileStream("Test_iText7_1.pdf", FileMode.Open), pdf, properties);

 Paragraph header = new Paragraph("HEADER")
 .SetTextAlignment(TextAlignment.CENTER)
 .SetFontSize(16);
 document.Add(header);

 for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
 {
 Rectangle pageSize = pdf.GetPage(i).GetPageSize();
 float x = pageSize.GetWidth() / 2;
 float y = pageSize.GetTop() - 20;
 document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
 }

 document.SetTopMargin(50);
 document.SetBottomMargin(50);

 document.Close();
}

/**
iText URL to PDF
anchor-itext-url-to-pdf
**/
private void ExistingWebURL()
{
 //Initialize PDF writer
 PdfWriter writer = new PdfWriter("wikipedia.pdf");
 //Initialize PDF document
 using PdfDocument pdf = new PdfDocument(writer);

 ConverterProperties properties = new ConverterProperties();
 properties.SetBaseUri("https://en.wikipedia.org/wiki/Portable_Document_Format");

 Document document = HtmlConverter.ConvertToDocument(new FileStream("Test_iText7_1.pdf", FileMode.Open), pdf, properties);

 Paragraph header = new Paragraph("HEADER")
 .SetTextAlignment(TextAlignment.CENTER)
 .SetFontSize(16);
 document.Add(header);

 for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
 {
 Rectangle pageSize = pdf.GetPage(i).GetPageSize();
 float x = pageSize.GetWidth() / 2;
 float y = pageSize.GetTop() - 20;
 document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
 }

 document.SetTopMargin(50);
 document.SetBottomMargin(50);

 document.Close();
}
'''
'''iText URL to PDF
'''anchor-itext-url-to-pdf
'''*
Private Sub ExistingWebURL()
	'Initialize PDF writer
	Dim writer As New PdfWriter("wikipedia.pdf")
	'Initialize PDF document
	Using pdf As New PdfDocument(writer)
	
		Dim properties As New ConverterProperties()
		properties.SetBaseUri("https://en.wikipedia.org/wiki/Portable_Document_Format")
	
		Dim document As Document = HtmlConverter.ConvertToDocument(New FileStream("Test_iText7_1.pdf", FileMode.Open), pdf, properties)
	
		Dim header As Paragraph = (New Paragraph("HEADER")).SetTextAlignment(TextAlignment.CENTER).SetFontSize(16)
		document.Add(header)
	
		Dim i As Integer = 1
		Do While i <= pdf.GetNumberOfPages()
			Dim pageSize As Rectangle = pdf.GetPage(i).GetPageSize()
'INSTANT VB WARNING: Instant VB cannot determine whether both operands of this division are integer types - if they are then you should use the VB integer division operator:
			Dim x As Single = pageSize.GetWidth() / 2
			Dim y As Single = pageSize.GetTop() - 20
			document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0)
			i += 1
		Loop
	
		document.SetTopMargin(50)
		document.SetBottomMargin(50)
	
		document.Close()
	End Using
End Sub

VB C#

4.3. Code Comparison
With iText 7, it took the author longer to develop code to convert the document at the given URL to PDF. Two lines of code are needed:
MemoryStream wiki = GetStreamFromUrl("https://en.wikipedia.org/wiki/Tiger");

HtmlConverter.ConvertToPdf(wiki, new FileStream("wikipedia.pdf",FileMode.OpenOrCreate));

MemoryStream wiki = GetStreamFromUrl("https://en.wikipedia.org/wiki/Tiger");

HtmlConverter.ConvertToPdf(wiki, new FileStream("wikipedia.pdf",FileMode.OpenOrCreate));
Dim wiki As MemoryStream = GetStreamFromUrl("https://en.wikipedia.org/wiki/Tiger")

HtmlConverter.ConvertToPdf(wiki, New FileStream("wikipedia.pdf",FileMode.OpenOrCreate))

VB C#

A MemoryStream object as well as a FileStream object have to be created with set properties.
Let's have a look at IronPDF.
IronPDF needed three lines of code (if you include the SaveAs method at the bottom of the code segment as well), but otherwise just two lines were needed:
var Renderer = new IronPdf.ChromePdfRenderer();
using var PDF = Renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/Portable_Document_Format");
PDF.SaveAs("wikipedia.pdf")

var Renderer = new IronPdf.ChromePdfRenderer();
using var PDF = Renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/Portable_Document_Format");
PDF.SaveAs("wikipedia.pdf")
Dim Renderer = New IronPdf.ChromePdfRenderer()
Dim PDF = Renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/Portable_Document_Format")
'INSTANT VB TODO TASK: The following line uses invalid syntax:
'PDF.SaveAs("wikipedia.pdf")

VB C#

No need for a FileStream or an additional .NET object, as all the functionality seems to be built-in to the IronPdf RenderUrlAsPdf method.
4.4. Output Comparison
I am including an Output comparison now, as this should apply to all the following exercises that we’ll do during this tutorial.
With this code segment we have transformed the Tiger Wikipedia webpage to PDF with both libraries.
4.5. iTextSharp 7 File Output
The file that was output by using iText’s library has 49 pages. It didn’t render JavaScript nor CSS. The resulting output is shown below:
Figure 8 – iText Tiger Wiki page

4.6. IronPDF File Output
The file that was output by using IronPDF’s library has 12 pages. It rendered JavaScript and CSS quite well. The resulting output is shown below:
Figure 9 – IronPDF Tiger Wiki Page

A picture tells a thousand words…. IronPDF shines at HTML to PDF rendering.

5. Generate PDF from HTML Input String
The next code creates a PDF document and prints an HTML string inside it.
5.1. IronPDF Document from HTML
The following code makes use of IronPDF to generate a PDF containing HTML input.
/**
IronPDF HTML to PDF
anchor-ironpdf-document-from-html
**/
private void HTMLString()
{
 // Render any HTML fragment or document to HTML
 var Renderer = new IronPdf.ChromePdfRenderer();
 using var PDF = Renderer.RenderHtmlAsPdf("<h1>Hello IronPdf</h1>");

 Renderer.RenderingOptions.TextFooter = new HtmlHeaderFooter() { HtmlFragment = "<div style='text-align:right'><em style='color:pink'>page {page} of {total-pages}</div>" };

 var OutputPath = "ChromePdfRenderer.pdf";
 PDF.SaveAs(OutputPath);
 Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Screen;
}

/**
IronPDF HTML to PDF
anchor-ironpdf-document-from-html
**/
private void HTMLString()
{
 // Render any HTML fragment or document to HTML
 var Renderer = new IronPdf.ChromePdfRenderer();
 using var PDF = Renderer.RenderHtmlAsPdf("<h1>Hello IronPdf</h1>");

 Renderer.RenderingOptions.TextFooter = new HtmlHeaderFooter() { HtmlFragment = "<div style='text-align:right'><em style='color:pink'>page {page} of {total-pages}</div>" };

 var OutputPath = "ChromePdfRenderer.pdf";
 PDF.SaveAs(OutputPath);
 Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Screen;
}
'''
'''IronPDF HTML to PDF
'''anchor-ironpdf-document-from-html
'''*
Private Sub HTMLString()
	' Render any HTML fragment or document to HTML
	Dim Renderer = New IronPdf.ChromePdfRenderer()
	Dim PDF = Renderer.RenderHtmlAsPdf("<h1>Hello IronPdf</h1>")

	Renderer.RenderingOptions.TextFooter = New HtmlHeaderFooter() With {.HtmlFragment = "<div style='text-align:right'><em style='color:pink'>page {page} of {total-pages}</div>"}

	Dim OutputPath = "ChromePdfRenderer.pdf"
	PDF.SaveAs(OutputPath)
	Renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Screen
End Sub

VB C#

5.2. iText 7 HTML to PDF
The following code is using iText7 to create a PDF containing HTML text.
/**
iText HTML to PDF
anchor-itext-html-to-pdf
**/
private void HTMLString()
{
 HtmlConverter.ConvertToPdf("< h1 > Hello iText7 </ h1 >", new FileStream("ChromePdfRenderer.pdf", FileMode.Create));
}

/**
iText HTML to PDF
anchor-itext-html-to-pdf
**/
private void HTMLString()
{
 HtmlConverter.ConvertToPdf("< h1 > Hello iText7 </ h1 >", new FileStream("ChromePdfRenderer.pdf", FileMode.Create));
}
'''
'''iText HTML to PDF
'''anchor-itext-html-to-pdf
'''*
Private Sub HTMLString()
	HtmlConverter.ConvertToPdf("< h1 > Hello iText7 </ h1 >", New FileStream("ChromePdfRenderer.pdf", FileMode.Create))
End Sub

VB C#

5.3. Code Comparison
iText makes use of the HtmlConverter.ConvertToPdf call again to send an HTML string to be output as a PDF.
IronPDF makes use of its RenderHtmlAsPdf method which is specifically designed to work with HTML and PDF.
Both options are quite quick and to the point, but IronPDF allowed a lot of control over the rendering process and even using HTML to add headers and footers to PDF Pages.

6. Convert ASPX Pages to PDF
The next code creates a PDF document from an ASPX page.
6.1. IronPDF Render PDF from ASPX
The following code makes use of IronPDF to create a PDF containing from an ASPX file. The Web form becomes a dynamic PDF by adding 1 line of code to the Page_Load event. IronPdf.AspxToPdf.RenderThisPageAsPdf();
/**
IronPDF ASPX to PDF
anchor-ironpdf-render-pdf-from-aspx
**/
protected void Page_Load(object sender, EventArgs e)
{
 IronPdf.AspxToPdf.RenderThisPageAsPdf();
}

/**
IronPDF ASPX to PDF
anchor-ironpdf-render-pdf-from-aspx
**/
protected void Page_Load(object sender, EventArgs e)
{
 IronPdf.AspxToPdf.RenderThisPageAsPdf();
}
'''
'''IronPDF ASPX to PDF
'''anchor-ironpdf-render-pdf-from-aspx
'''*
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
	IronPdf.AspxToPdf.RenderThisPageAsPdf()
End Sub

VB C#

6.2. iTextSharp ASPX to PDF
It seems as if the pdfHTML library of iText7 does not support creating PDFs from ASPX web pages. This functionality would need to be coded on a project-for-project basis.
The developer should get the HTML from the framework, then the pdfHTML add-on will accept that HTML for conversion to PDF.

7. Convert XML to PDF
The following code takes XML and converts it to PDF
7.1. IronPDF Creates PDF from XML
/**
IronPDF XML to PDF
anchor-ironpdf-creates-pdf-from-xml
**/
private void XMLtoPDF(string XSLT, string XML)
{
 XslCompiledTransform transform = new XslCompiledTransform();
 using(XmlReader reader = XmlReader.Create(new StringReader(XSLT)))
 {
 transform.Load(reader);
 }

 StringWriter results = new StringWriter();
 using(XmlReader reader = XmlReader.Create(new StringReader(XML)))
 {
 transform.Transform(reader, null, results);
 }

 IronPdf.ChromePdfRenderer Renderer = new IronPdf.ChromePdfRenderer();
 // options, headers, and footers may be set there
 // Render our XML as a PDF via XSLT
 Renderer.RenderHtmlAsPdf(results.ToString()).SaveAs("XMLtoPDF.pdf");
}

/**
IronPDF XML to PDF
anchor-ironpdf-creates-pdf-from-xml
**/
private void XMLtoPDF(string XSLT, string XML)
{
 XslCompiledTransform transform = new XslCompiledTransform();
 using(XmlReader reader = XmlReader.Create(new StringReader(XSLT)))
 {
 transform.Load(reader);
 }

 StringWriter results = new StringWriter();
 using(XmlReader reader = XmlReader.Create(new StringReader(XML)))
 {
 transform.Transform(reader, null, results);
 }

 IronPdf.ChromePdfRenderer Renderer = new IronPdf.ChromePdfRenderer();
 // options, headers, and footers may be set there
 // Render our XML as a PDF via XSLT
 Renderer.RenderHtmlAsPdf(results.ToString()).SaveAs("XMLtoPDF.pdf");
}
'''
'''IronPDF XML to PDF
'''anchor-ironpdf-creates-pdf-from-xml
'''*
Private Sub XMLtoPDF(ByVal XSLT As String, ByVal XML As String)
	Dim transform As New XslCompiledTransform()
	Using reader As XmlReader = XmlReader.Create(New StringReader(XSLT))
		transform.Load(reader)
	End Using

	Dim results As New StringWriter()
	Using reader As XmlReader = XmlReader.Create(New StringReader(XML))
		transform.Transform(reader, Nothing, results)
	End Using

	Dim Renderer As New IronPdf.ChromePdfRenderer()
	' options, headers, and footers may be set there
	' Render our XML as a PDF via XSLT
	Renderer.RenderHtmlAsPdf(results.ToString()).SaveAs("XMLtoPDF.pdf")
End Sub

VB C#

The structure of the XSLT file is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <body>
 <h2>My CD Collection</h2>
 <p>Titles:
 <xsl:for-each select="catalog/cd">
 <xsl:value-of select="title"/>
 <xsl:if test="position() < last()-1">
 <xsl:text>, </xsl:text>
 </xsl:if>
 <xsl:if test="position()=last()-1">
 <xsl:text>, and </xsl:text>
 </xsl:if>
 <xsl:if test="position()=last()">
 <xsl:text>!</xsl:text>
 </xsl:if>
 </xsl:for-each>
 </p>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <body>
 <h2>My CD Collection</h2>
 <p>Titles:
 <xsl:for-each select="catalog/cd">
 <xsl:value-of select="title"/>
 <xsl:if test="position() < last()-1">
 <xsl:text>, </xsl:text>
 </xsl:if>
 <xsl:if test="position()=last()-1">
 <xsl:text>, and </xsl:text>
 </xsl:if>
 <xsl:if test="position()=last()">
 <xsl:text>!</xsl:text>
 </xsl:if>
 </xsl:for-each>
 </p>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

HTML

7.2. iTextSharp XML to PDF
iText's support for processing XML to PDF may require custom development work.

8. Create a Live Chart Based on External Input
The next code obtains data from an external source and creates a chart accordingly.
8.1. IronPDF Chart Creation
The following code uses IronPDF to quickly create a chart and set the page properties using HTML to PDF.
/**
IronPDF Create Chart
anchor-ironpdf-chart-creation
**/
private void Chart()
{
 var Renderer = new ChromePdfRenderer();
 using var PDF = Renderer.RenderUrlAsPdf("https://bl.ocks.org/mbostock/4062006");

 Renderer.RenderingOptions.PaperSize = IronPdf.Rendering.PdfPaperSize.A4;
 Renderer.RenderingOptions.PaperOrientation = IronPdf.Rendering.PdfPaperOrientation.Landscape;
 PDF.SaveAs("chart.pdf");
}

/**
IronPDF Create Chart
anchor-ironpdf-chart-creation
**/
private void Chart()
{
 var Renderer = new ChromePdfRenderer();
 using var PDF = Renderer.RenderUrlAsPdf("https://bl.ocks.org/mbostock/4062006");

 Renderer.RenderingOptions.PaperSize = IronPdf.Rendering.PdfPaperSize.A4;
 Renderer.RenderingOptions.PaperOrientation = IronPdf.Rendering.PdfPaperOrientation.Landscape;
 PDF.SaveAs("chart.pdf");
}
'''
'''IronPDF Create Chart
'''anchor-ironpdf-chart-creation
'''*
Private Sub Chart()
	Dim Renderer = New ChromePdfRenderer()
	Dim PDF = Renderer.RenderUrlAsPdf("https://bl.ocks.org/mbostock/4062006")

	Renderer.RenderingOptions.PaperSize = IronPdf.Rendering.PdfPaperSize.A4
	Renderer.RenderingOptions.PaperOrientation = IronPdf.Rendering.PdfPaperOrientation.Landscape
	PDF.SaveAs("chart.pdf")
End Sub

VB C#

8.2. iText C# Charts
The following code uses iText7 to create a chart and set properties. We can see a programmatic drawing-api style.
/**
iText Create Chart
anchor-itext-c-charts
**/
private void Chart()
{
 //Initialize PDF writer
 PdfWriter writer = new PdfWriter("chart.pdf");
 //Initialize PDF document
 using PdfDocument pdf = new PdfDocument(writer);

 ConverterProperties properties = new ConverterProperties();
 properties.SetBaseUri("https://bl.ocks.org/mbostock/4062006");

 Document document = HtmlConverter.ConvertToDocument(new FileStream("Test_iText7_1.pdf", FileMode.Open), pdf, properties);

 Paragraph header = new Paragraph("HEADER")
 .SetTextAlignment(TextAlignment.CENTER)
 .SetFontSize(16);
 document.Add(header);

 for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
 {
 Rectangle pageSize = pdf.GetPage(i).GetPageSize();
 float x = pageSize.GetWidth() / 2;
 float y = pageSize.GetTop() - 20;
 document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
 }

 document.Close();
}

/**
iText Create Chart
anchor-itext-c-charts
**/
private void Chart()
{
 //Initialize PDF writer
 PdfWriter writer = new PdfWriter("chart.pdf");
 //Initialize PDF document
 using PdfDocument pdf = new PdfDocument(writer);

 ConverterProperties properties = new ConverterProperties();
 properties.SetBaseUri("https://bl.ocks.org/mbostock/4062006");

 Document document = HtmlConverter.ConvertToDocument(new FileStream("Test_iText7_1.pdf", FileMode.Open), pdf, properties);

 Paragraph header = new Paragraph("HEADER")
 .SetTextAlignment(TextAlignment.CENTER)
 .SetFontSize(16);
 document.Add(header);

 for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
 {
 Rectangle pageSize = pdf.GetPage(i).GetPageSize();
 float x = pageSize.GetWidth() / 2;
 float y = pageSize.GetTop() - 20;
 document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
 }

 document.Close();
}
'''
'''iText Create Chart
'''anchor-itext-c-charts
'''*
Private Sub Chart()
	'Initialize PDF writer
	Dim writer As New PdfWriter("chart.pdf")
	'Initialize PDF document
 Using pdf As New PdfDocument(writer)
	
		Dim properties As New ConverterProperties()
		properties.SetBaseUri("https://bl.ocks.org/mbostock/4062006")
	
		Dim document As Document = HtmlConverter.ConvertToDocument(New FileStream("Test_iText7_1.pdf", FileMode.Open), pdf, properties)
	
		Dim header As Paragraph = (New Paragraph("HEADER")).SetTextAlignment(TextAlignment.CENTER).SetFontSize(16)
		document.Add(header)
	
		Dim i As Integer = 1
		Do While i <= pdf.GetNumberOfPages()
			Dim pageSize As Rectangle = pdf.GetPage(i).GetPageSize()
'INSTANT VB WARNING: Instant VB cannot determine whether both operands of this division are integer types - if they are then you should use the VB integer division operator:
			Dim x As Single = pageSize.GetWidth() / 2
			Dim y As Single = pageSize.GetTop() - 20
			document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0)
			i += 1
		Loop
	
		document.Close()
 End Using
End Sub

VB C#

9. Is there a Free iTextSharp License for Commercial Use?
The biggest difference between IronPDF's and iText's licensing options is the fact that iTextSharp is Open Source under the AGPL license agreement. In short (as quoted, "The AGPL license differs from the other GNU licenses in that it was built for network software. You can distribute modified versions if you keep track of the changes and the date you made them. As per usual with GNU licenses, you must license derivatives under AGPL. It provides the same restrictions and freedoms as the GPLv3 but with an additional clause which makes it so that source code must be distributed along with web publication. Since websites and services are never distributed in the traditional sense, the AGPL is the GPL of the web."
This means that if the application uses iTextSharp in any way - even over a local network OR over the internet, then the application’s full source code must be freely available to every user. That is not always in a project's best interest.
This license is often used for highly academic works that are intended to stay academic, and also for open source projects who intend paid usage for software deployed outside academic environments. The nature of the AGPL license agreement makes the open source iTextSharp license difficult for many commercial use cases, unless a private license can be arranged and legally negotiated with the developers.
IronPDF, on the other hand, is an openly commercial C# PDF library. It is free for development and can always be licensed for commercial deployment. This clear license model does not require developers to learn the ins and outs of GNU / AGPL license models and can instead focus on their projects. Licenses are available for single project use, single developers, agencies and global corporations, and SaaS and OEM redistribution. No legal fees negotiated, just straightforward licensing.
10. Summary
IronPdf is:
	.NET First with an intuitive API for C# and VB developers
	Openly commercial with published pricing
	Focuses on rendering PDF's from HTML so that developers do not need to learn how PDF's work
	A great choice for pragmatic coders trying to get a job done efficiantly.

iText (iTextSharp) is:
	Java First
	Very much Open Source. We can call them for a quote for use other than in strict open source AGLP projects.
	Focuses on rendering PDF's using a programmatic API based around how PDFs work internally
	A great choice for free and academic projects - and also for highly technical commercial PDF applications on high budget projects.

Tutorial Quick Access
Download this Project on GitHub
You can access and share all the source code from this comparison tutorial in C# on GitHub.
IronPDF and iTextSharp Code Comparison

Get the C# PDF Quickstart Handbook
We created a free PDF resource guide to help make developing PDFs easier for .NET, with walk-throughs of common functions and examples for manipulating, editing, generating, and saving PDFS in C# and VB.NET for your project.
 Download the Guide

Explore the IronPDF API Reference
Explore the API Reference for IronPDF C# Library, including details of all of IronPDF’s features, classes, method fields, namespaces, and enums.
View the API Reference

IronPDF Blog
	All Articles
	Using IronPDF
	Product Comparisons
	PDF Tools
	.NET Help
	Developer Updates

View the IronPDF YouTube Playlist

Table of Contents
	1. Licensing	2. IronPDF Features

	3. IronPDF Library Installation	3.1. Install using NuGet
	3.2. Visual Studio
	3.3. Developer Command Prompt
	3.4. Download the NuGet Package directly
	3.5. Download the .DLL Library

	4. Create a PDF from an Existing URL	4.1. IronPDF Website to PDF
	4.2. iText7 URL to PDF
	4.3. Code Comparison
	4.4. Output Comparison
	4.5. iTextSharp 7 File Output
	4.6. IronPDF File Output

	5. Generate PDF from HTML Input String	5.1. IronPDF Document from HTML
	5.2. iText 7 HTML to PDF
	5.3. Code Comparison

	6. Convert ASPX Pages to PDF	6.1. IronPDF Render PDF from ASPX
	6.2. iTextSharp ASPX to PDF

	7. Convert XML to PDF	7.1. IronPDF Creates PDF from XML
	7.2. iTextSharp XML to PDF

	8. Create a Live Chart Based on External Input	8.1. IronPDF Chart Creation
	8.2. iText C# Charts

	9. Is there a Free iTextSharp License for Commercial Use?
	10. Summary

Install with NuGet nuget.org/packages/IronPdf

PM > Install-Package IronPdf

Was This Page Useful?
	 Join our Bug Bounty for Iron Swag

Ready to get started? Version: 2024.2 just released
 Start for Free Total downloads: 8,434,114

View Licenses >

Get your FREE
30-day Trial Key instantly.
15-day Trial Key instantly.

No credit card or account creation required

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

Test in production
without watermarks
30 days fully
functional product
24/5 technical
support during trial

Try IronPDF for Free
Get Set Up in 5 Minutes

Install with NuGet
Version: 2024.2

Install-Package IronPdf

nuget.org/packages/IronPdf/

	In Solution Explorer, right-click References, Manage NuGet Packages
	Select Browse and search "IronPdf"
	Select the package and install

Download DLL
Version: 2024.2

 Download Nowor download Windows Installer here.

	Download and unzip IronPDF to a location such as ~/Libs within your Solution directory
	In Visual Studio Solution Explorer, right click References. Select Browse, "IronPdf.dll"

Licenses from $749

Have a question? Get in touch with our development team.

15 1000 1

Now that you’ve downloaded IronPDF
Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
30 days fully functional product
24/5 technical support during trial

Get your free 30-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Your Trial License Key has been emailed to you.
Not ready to buy?

Thank you.
View your license options:
Thank you.
If you'd like to speak to our licensing team:
View Licensing
 Schedule a call
Have a question? Get in touch with our development team.
Have a question? Get in touch with our development team.

15 1000 1

Now that you’ve downloaded IronPDF
Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
15 days fully functional product
24/5 technical support during trial

Get your free 15-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
30 days fully functional product
24/5 technical support during trial

Get your free 30-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
15 days fully functional product
24/5 technical support during trial

Get your free 15-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Your Trial License Key has been emailed to you.
Not ready to buy?

Download IronPDF free to apply
your Trial Licenses Key
Thank you.
If you'd like to speak to our licensing team:
 Install with NuGet View Licensing
 Schedule a call
Licenses from $749. Have a question? Get in touch.
Have a question? Get in touch with our development team.

15 1000 1

Your Trial License Key has been emailed to you.
Not ready to buy?

Download IronPDF free to apply
your Trial Licenses Key
Thank you.
If you'd like to speak to our licensing team:
 Install with NuGet View Licensing
 Schedule a call
Licenses from $749. Have a question? Get in touch.
Have a question? Get in touch with our development team.

Get started for FREE
No credit card required
Test in a live environment
Test in production without watermarks.
Works wherever you need it to.

Fully-functional product
Get 30 days of fully functional product.
Have it up and running in minutes.

24/5 technical support
Full access to our support engineering team during your product trial

Get your free 30-day Trial Key instantly.

No credit card or account creation required
The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

Trusted by Over 2 Million Engineers Worldwide
	
	
	
	
	
	

Get started for FREE
No credit card required
Test in a live environment
Test in production without watermarks.
Works wherever you need it to.

Fully-functional product
Get 30 days of fully functional product.
Have it up and running in minutes.

24/5 technical support
Full access to our support engineering team during your product trial

Get your free 30-day Trial Key instantly.

Install with NuGet
View Licensing

Licenses from $749. Have a question? Get in touch.

Trusted by Over 2 Million Engineers Worldwide
	
	
	
	
	
	

Get started for FREE
No credit card required
Test in a live environment
Test in production without watermarks.
Works wherever you need it to.

Fully-functional product
Get 30 days of fully functional product.
Have it up and running in minutes.

24/5 technical support
Full access to our support engineering team during your product trial

Get your free 30-day Trial Key instantly.

No credit card or account creation required
The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

Trusted by Over 2 Million Engineers Worldwide
	
	
	
	
	
	

 Start for Free Free NuGet DownloadFully-functional product, get the key instantly

 PM > Install-Package IronPdf

IronPDF is a part of IRONSUITE
9 .NET API products for your office documents
Get 9 products for the price of 2
Get 9 products for the price of 2
 Start Free Trial

	

- Create, read, and edit PDFs. HTML to PDF for NET.

	

- Edit DOCX Word Files. No Office Interop required.

	

- Edit Excel & CSV files. No Office Interop required.

	

- OCR (extract text from images) in 127 languages.

	

- Read and write QR & Barcodes.

	

- Read and write QR codes.

	

- Zip and unzip archives

	

- Print documents in .NET applications

	

- Scrape structured data from websites.

When you need your PDF to look like HTML, fast.

Search
CtrlK

Documentation
	Code Examples
	API Reference
	How-Tos
	Features
	Blog
	Credits
	Product Brochure

Tutorials
	Get Started
	HTML to PDF
	Editing PDFs in C#
	Debug HTML with Chrome
	ASPX to PDF
	VB.NET to PDF

Licensing
	Buy a License
	Support Extensions
	Resellers
	License Keys
	EULA

Try IronPDF Free
	 Download on NuGet
	 Download DLL

	 Download Windows Installer

	 Start Free Trial

When you need your PDF to look like HTML, fast.
When you need to create, edit, and format Word documents, fast.
The Excel API you need, without the Office Interop hassle.
Tesseract 5 OCR in the languages you need, We support 127+.
When you need to read, write, and style Barcodes, fast.
When you need to read, write, and style QR codes, fast.
When you need to zip and unzip archives, fast.
When you need to print documents, fast.
The power you need to scrape & output clean, structured data.
The complete .NET Suite for your office.

	IRONSUITE
	|
	IRONPDF
	IRONWORD
	IRONXL
	IRONOCR
	IRONBARCODE
	IRONQR
	IRONZIP
	IRONPRINT
	IRONWEBSCRAPER

205 N. Michigan Ave. Chicago, IL 60611 USA +1 (312) 500-3060

	About Us
	News
	Customers
	Careers
	Contact Us
	 Join Iron Slack

Copyright © Iron Software LLC 2013-2024
	Terms
	Privacy

Thank you!
Your license key has been delivered to the email provided. Contact us

24-Hour Upgrade Offer:
Save 50% on a
Professional Upgrade

Go Professional to cover 10 developers
and unlimited projects.
 hours
:
 minutes
:
 seconds

Upgrade to Professional

Upgrade

Professional
$600 USD
$299 USD

	10 developers
	10 locations
	10 projects

TODAY ONLY

5 .NET Products for the Price of 2

 Total Suite Value:
$7,192 USD

Upgrade price
TODAY
ONLY
$499 USD

After 24 Hrs
$1,098 USD

